

Next Era Mobility.

Started 2016, with over 130 people fueling the future today.

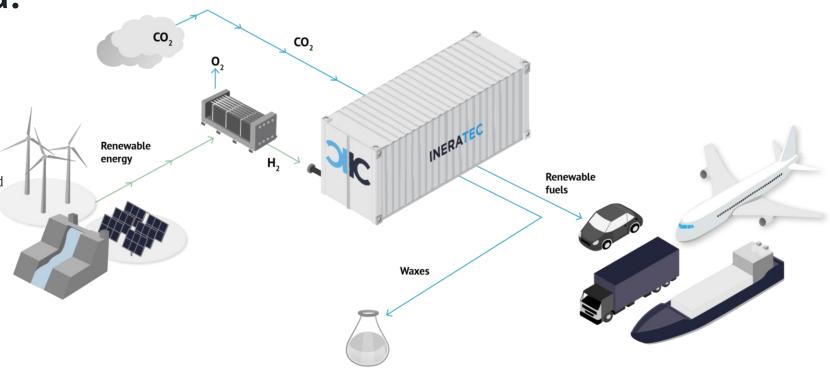
PROBLEM

Decarbonizing Hard-to-abate sectors

© INERATEC 2024

SOLUTION

POWER-to-Liquid:

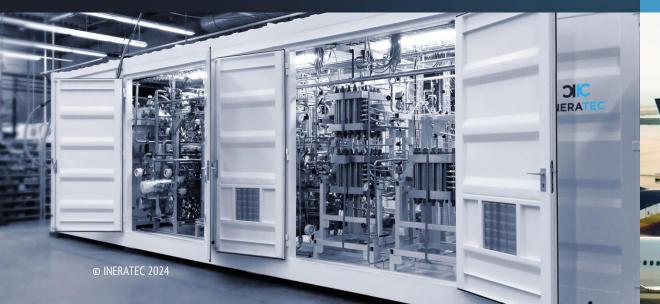

CO₂-recycling

THE POWER-TO-LIQUID SOLUTION:

We recycle the greenhouse gas CO₂ and use green hydrogen in our chemical plants to produce climate neutral e-fuels and e-chemicals.

INERATEC focuses on high TRL, high product yield, and robust thermochemical process pathways to produce drop-in and ASTM compliant fuels.

© INERATEC 2024 Slide 5

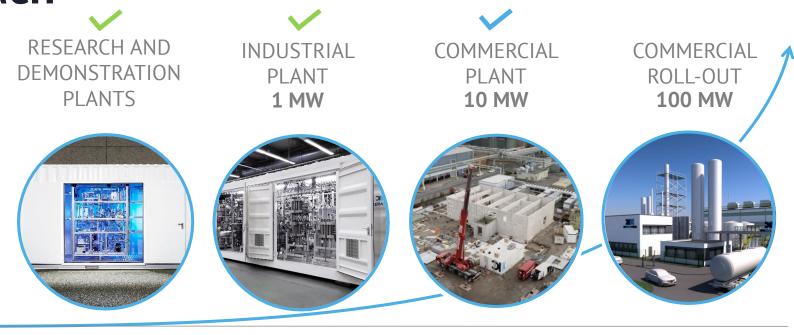


Power-to-X-Plants

As a technology provider, we offer modular chemical plants for Power-to-X applications.

E-Fuels and E-Chemicals

As a solution provider, we deliver drop-in ready SAF (Sustainable Aviation Fuel), AvGas (Aviation Gasoline), and e-Diesel, as well as e-waxes and e-methanol for sustainable chemical products.

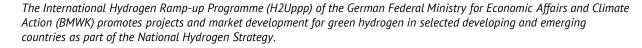


Scalability &

modular approach

SCALE-UP ROADMAP:

We supply chemical plant units along the availability of green hydrogen and carbon dioxide.


>0.1 M US gal/a

>1.0 M US gal/a

>10.0 M US gal/a

DISCLAIMER

The following information does not constitute an invitation to engage in transactions or to conclude legal transactions. The information contained in these documents has been obtained from or is based on sources INERATEC believes to be reliable. However, INERATEC does not guarantee the accuracy, timeliness or completeness of the information. This information may contain forward-looking assumptions and forecasts. These are statements of opinion at the time of publication and may change at a later date. INERATEC also reserves the right to change opinions expressed in documents without prior notice and without giving reasons. INERATEC disclaims all liability for any loss arising from the use of these documents and the possible legal, regulatory, tax and accounting consequences. In particular, INERATEC is not liable for the success of the recommendations it makes. INERATEC assumes that investors will carry out their own due diligence on their securities.

PROJECT

Feasibility study Chile (2023-2024)

FACTS:

- Project start in 2023
- Over 400,000 EUR invest
- Target: Production of up to 50,000 t/a e-Fuels
- Feasibility study is finalised

OBJECTIVES:

- Potential sites profiling
- Facility plot plan (3D)
- Block Flow Diagram
- Mapping of local stakeholders
- Techno-economic analysis

About H2Uppp:

- Supports efforts to boost green H₂ and PtX market
- In selected developing and emerging economies
- In cooperation with the private sector

© INERATEC 2024 Slide 12

Identify local Resources

to produce e-Fuels

- Identification of feedstock sources
- Analysis of connection to electrical grid

Selection of potential Sites

to install a PtL-plant in Chile

- Identification of potential zones
- Qualification of potential sites

Permits

to install a PtL-plant in Chile

- Necessary permits identified
- App. Timeline for permit submission
- Identification of local awarding authorities

Identify local Partners

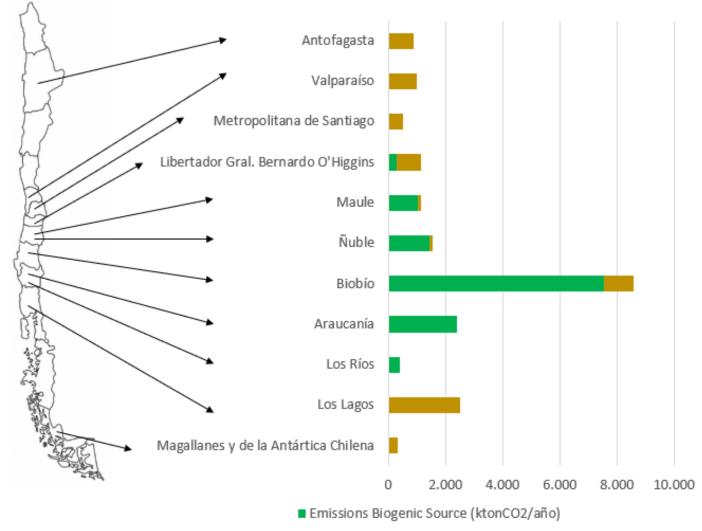
for assembly and certification of e-Fuels

- Identification of local companies for assembling & manufacturing
- Analysis of certification process and auditing bodies

Identify potential Off-takers

- Market of liquid fuels in Chile
- Identification of potential Off-takers

© INERATEC 2024


Identification of	Identification of	Identification of industrial scaled	ldentification of	Identification of connection to the	Identification of potential	Distances to the
Industrial Lands*	CO ₂ sources*	H ₂ Sources*	Water Sources*	Electrical System*	Syngas*	Transport Network*
 Feasible permitting for chemical plant Near to H₂ (max. 2 km) & to electricity substation Buildable land 	 At least 170,000 t/a Biogenic Industrial At proximity to site (max. 50 km) 	 At least 23,000 t/a At proximity of CO₂ source (max. 150 km) Mature development (FEL1-3) 	 Nearby desalination plant Connection to potable water network Feasibility of waterhole 	 Substation at proximity with min. capacity of 220 kV Grid total capacity of 200 MW by 8,000 h/a 	 At least 300.000 NM₃/a (without inert gases) Type of biomass 	Highway & railroadPipeline at proximity

Local Resources CO₂ sources

CRITERIA:

- Select sources of
 CO₂ > 100,000 t/a
 → 55 million tons in
 67 point sources.
- Excludes coal-fired and natural gas power plants (plan to cease operations by 2024 and limited operation time)
 - → 20.5 million tons in 44 point sources.

■ Emissions Industrial Source (ktonCO2/año)

Local resources CO₂ sources

- 1 CMPC (Pulp & Paper)
- Biogenic source (biomass)
- > 7000 kton CO_{2}/a
- 3 big plants in Potential Zone N°7

- 2 Comasa Energía (Thermoelectric Power Plant)
 - Biogenic source (biomass)
 - 380 kton CO₂/a
 - 1 plant in Potential Zone N°12

- Celulosa Arauco (Pulp & Paper)
 - Biogenic source (biomass)
 - > 2000 kton CO_{7}/a
 - 5 plants in Potential Zone N°5, 6, 7 and 12

Local resources CO₂ sources

- 4 Cementos Biobío (Cement)
- **Cementos Polpaico** (Cement)

- Industrial source (Petcoke)
- 272 kton CO₂/year
- 2 plant in Potential Zone
 N°1 and 5

- Industrial source (Petcoke)
- 500 kton CO₂/year
- 1 plant in Potential Zone N°3

- 6 Energías Industriales (Thermoelectric Power Plant)
 - Biogenic source (biomass)
- 388 kton CO₂/year
- 1 big plant in Potential Zone N°5

Local resources H₂ sources

1 GENESIS-ANTUKO

(La Negra):

- 100 MW // 15 kton/a
- Potential Zone N° 1
- Status: FEL 2

2 ATACAMA HYDROGEN

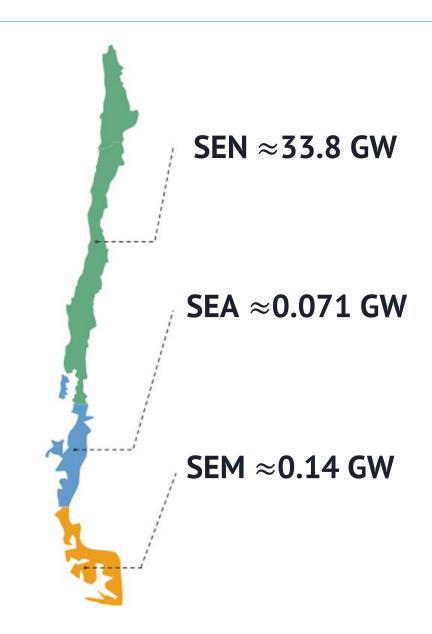
(Paracelsus):

- 2 GW // 120 kton/a
- Potential Zone N° 1
- Status: FEL 1

- 350 MW // 61 kton/a
- Potential Zone N° 1
- Status: FEL 3

4 CABEZA DEL MAR GH Energy

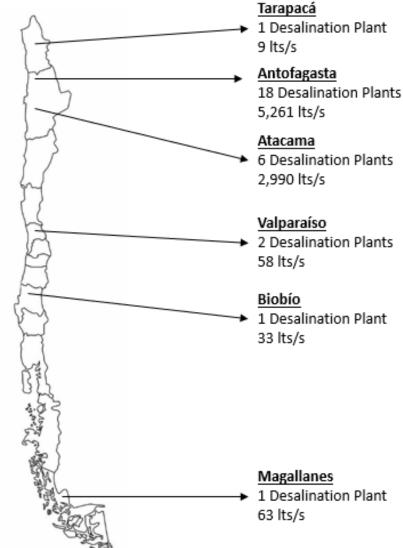
(Cabo Negro):


- 1 GW // 119 kton/a
- Potential Zone N° 16
- Status: FEL 1

© INERATEC 2024 Slide 19

Local resources Renewable energy

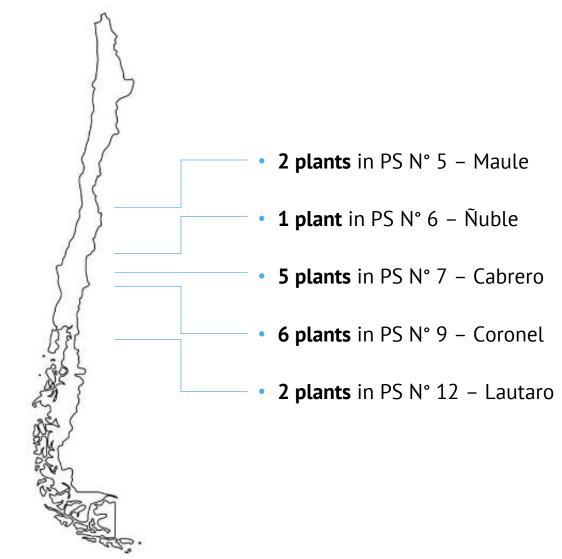
- In Chile, 33.8 GW of electrical capacity is installed
 - \approx 20.5 GW are renewable energy
 - 50% of this is controlled by 5 big providers
 - There is one big interconnected System:
 SEN (National Electric System)
 - And two medium systems:
 SEA (Aysen Electric System)
 SEM (Magallanes Electric System)



Local resources Water sources

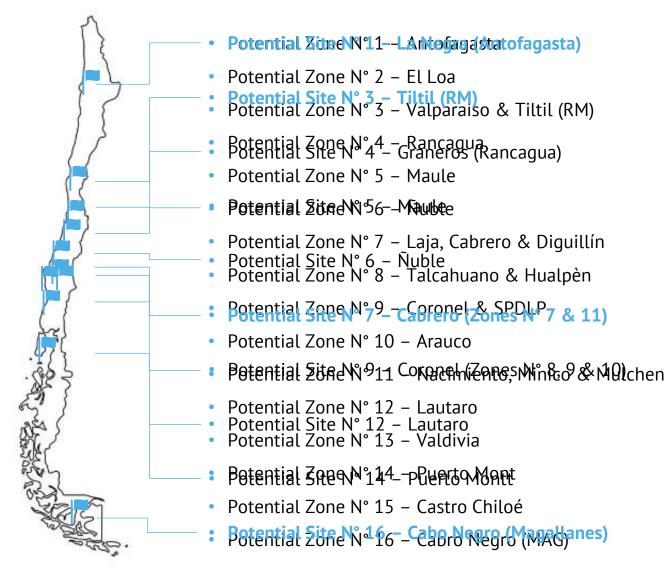
WATER ACCESS:

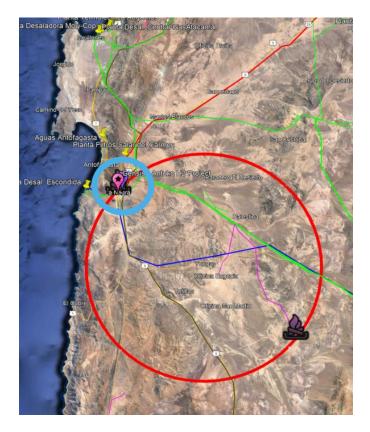
- Three options available:
 - Connect to the distribution sanitary water network
 - Access to on site waterhole
 - Supply through pipeline from third-party water treatment plants
- There are 29 desalination plants in Chile;
 24 of these plants have a major capacity.



© INERATEC 2024 Slide 21

Local resources Syngas sources


- There is no production or supply of syngas or any similar gas in Chile.
 - There are some 16 plants producing more than 100,000 tons of wood waste per year that could be used to produce syngas.
 - INERATEC's optimal ratio:
 H₂: CO = 2:1 + max. 50 % inert gases


Potential Sites Zones and Sites

- Preliminary 16 potential zones
 were identified, based on an
 analysis of the mandatory resources
 for a PtL-plant.
 - Neighbouring zones have been combined to a single zone, when the distances of the different sources were at proximity.
 - This reduces the list of 16 potential zones to **10 potential sites**.

Site N° 1 – LA NEGRA

Industrial Land 38,000 m²

Distance by railroad 0.8 km

Distance by Highway 0 km (Ruta 5)

Electrical connection to substation

Tension 220 kV

Distance 0.8 km

Estimated year 2025

H₂ sources

Name Antuko-Genesis (La Negra)
Capacity 100 MW

Production 15 kton/year

Distance by highway 1.8 km

Principal water source

Type Feasibility of waterhole

Desalination plant Coloso

CO₂ sources

Planta Cemento Antofagasta

Emissions **167,295 t/a**

Distance to highway 0.3 km

Faena el penon

Emissions **600,139 t/a**

Distance by highway 136 km

© INERATEC 2024

Slide 24

Site N° 3 – Tiltil (RM)

Industrial Land 75,000 m²

Distance to railroad 0.5 km

Distance to Highway 0.4 km

Electrical connection to substation

Tension 220 kV

Distance 1.6 km

Estimated year 2026-2027

H₂ sources

None

Principal water source

Type Feasibility of waterhole

CO₂ sources

Planta Co Generadora

Planta Cerro Blanco 500,000 t/a, 28.8 km

Cemento Melòn Planta 144,221 t/a, 48.8 km

Refineria ENAP 294,729 t/a, 85.4 km

178,669 t/a, 85.4 km

271,727 Gu, 03.1 Kill

Elaboradora de Cobre 259,516 t/a, 105.5 km

© INERATEC 2024

Site N° 6 - CABRERO

Industrial Land 83,550 m²

Distance by railroad 0 km

Distance by Highway 1.3 km

Electrical connection to substation

Tension 66 kV

Distance 1.0 km

Estimated year 2026-2027

H₂ sources

None

Biomass producer

CMPC Maderas S.P.A.

Distance by highway 19 km

Principal water source

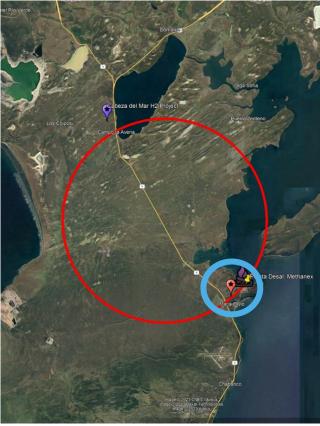
Type	Sanitary distribution		
	network		

255,512 t/a, 1.5 km

Slide 28

CO₂ sources

Neomas S.P.A.


	, , ,
Central Termoelectrica	115,801 t/a, 2.2 km
Orafti Chile S.A.	338,340 t/a, 15.5 km
Planta Trupán/Cholguan	403,049 t/a, 32.3 km
CMPC Cellulosa Planta	1,562,965 t/a, 54.2 km
Planta Remanofactura	107,940 t/a, 57.2 km

148,753 t/a, 53.9 km Aserradero Mulchen

© INERATEC 2024

Site N° 10 - CABO NEGRO (MAG)

Industrial Land > 170 ha available

Distance by highway 0.7 km

Electrical connection to substation

None

Principal water source

Type Feasibility of waterhole

H₂ sources

Name Cabeza del Mar

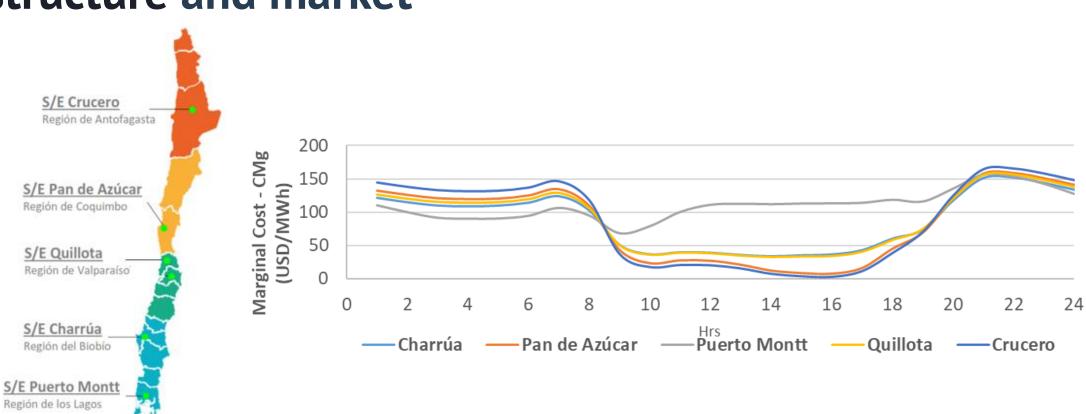
Capacity **1,000 MW**

Production > 100 kton/a

Distance by highway 20 km

CO₂ sources

Methanex Chile S.A.


Emissions **217,676 t/a**

© INERATEC 2024 Slide 29

Electrical price structure and market

© INERATEC 2024 / *Average hourly Marginal Costs (CMg)

Preliminary activities

Environmental permit

Plant construction & certification

Final activities

- Preparation of environmental study
- Application for electrical connection
- Architecture project

 Review all the information provided by the project owner

- Include the certification by a third-party organization
- Request authorization permit with the SEC for the operation

Start of operation

© INERATEC 2024

Principal institutions

Environmental Assessment Service (SEA)

1

 Verifies and approves the environmental impact study/declaration of the plant Superintendency of Electricity and Fuels (SEC)

2

- Verification of compliance to regulations and standards governing installations
- Certification by a 3rd party auditing body

Municipality

3

- Provides the building permit
- Request authorization permit with the SEC for the operation

National Energy Commission (CNE) and National Electric Coordinator (CEN)

- Conducts studies and provides grant permits for connection to the electrical system
- Provides the plant operating permit

© INERATEC 2024 Slide 34

TECHNICAL INFORMATION

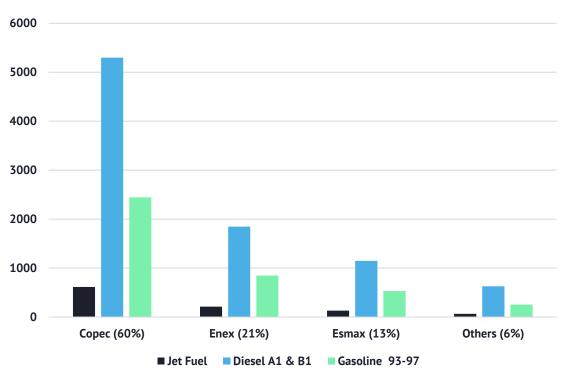
Block Diagram INERATEC INERATEC Subcontractor Local Subcontractor **POWER TRANSFORMATION POWER AND DISTRIBUTION SUPPLY OFF-GAS OFF-GAS HANDLING ELECTROLYZER CONTINUOUS & EMERGENCY INTERMEDIATE PRODUCT PTL SYNTHESIS UNIT** FT CO₂ STORAGE **STORAGE** CRUDE CO_2 SOURCE C INERATEC **WASTE WATER** UTILITY **WASTE WATER DISTRIBUTION UPGRADING PRODUCT LOADING &** WATER RECYCLE **TREATEMENT** UNIT STORAGE **SHIPPING** WATER **SUPPLY**

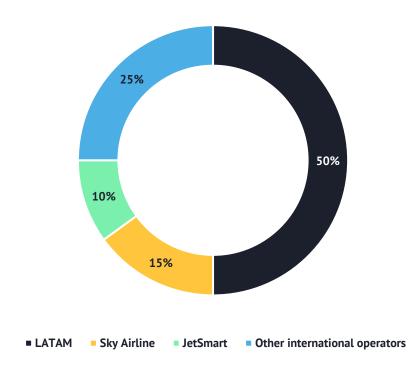
© INERATEC 2024 Slide 37

Production cost expectations for eSAF

PRODUCTION COST OPTIMIZATION

- Reduce electricity price
- Reduce CO₂ cost
- Reduce CAPEX of electrolysis + increase efficiency
- Reduce CAPEX of PtL synthesis + increase efficiency
- Reduce CAPEX of upgrading unit for eSAF production




Total Distribution Market

TOTAL FUELS DISTRIBUTED

(2020, in kton/year)

TOTAL CONSUMPTION JET FUEL (2020)

Samantha Michaux

Samantha.michaux@ineratec.de

M. +49 152 2850 6507

INERATEC GmbH

Siemensallee 84

76187 Karlsruhe

www.ineratec.de

