# Ciclo de Talleres Técnicos: Cadena de Valor del Hidrógeno Verde

Durante el primer ciclo detalleres realizados entre septiembre de 2022 y mayo de 2023, distintos expertos dentro de la industria del hidrógeno verde expusieron sobre tecnologías emergentes, desafíos regulatorios y oportunidades de mercado.











# Generación de hidrógeno verde

El hidrógeno verde (H2V) se produce mediante la electrólisis del agua utilizando energías renovables, como la solar o eólica.

# **H**2 Electrólisis

Proceso electroquímico que separa la molécula de agua mediante energía eléctrica, obteniendo hidrógeno y oxígeno.



#### **Electrolizador**

Dispositivo formado por un cátodo, un ánodo y un electrolito.

#### Tipos de electrolizadores

| SOEC*                        | Alcalino sólido* | Alcalino    | PEM         | AEM                          |
|------------------------------|------------------|-------------|-------------|------------------------------|
| *Tecnología<br>en desarrollo | Madurez          | <b>⊘</b>    | <b>⊘</b>    |                              |
|                              | Carga            | OH-         | H+          | OH-                          |
|                              | Pureza del H2    | 99,80%      | 99,99%      | 99,95%                       |
|                              | Eficiencia       | 70%         | 82%         | 75%                          |
|                              | Precio           | Menor costo | Mayor costo | Menor costo<br>a largo plazo |

# Sistemas de Recarga de Hidrógeno

Los vehículos de H2V utilizan pilas de combustible que se recargan en estaciones de servicio especializadas.



- · Cero emisiones.
- · Mayor autonomía.
- · Tiempos de repostajes de máx. 5 min.
- Infraestructura de repostaje en espacios reducidos.

¿Qué es HRS?

Es el acrónimo para

Es el acrónimo para "High-Flow Refueling System", o "Sistema de repostaje de alto flujo".

# ¿Cómo se diseña una estación de repostaje?

La ISO 19880 entrega una matriz de alternativas para su diseño:

Suministro de Hidrógeno

Estación de servicio

Producción InSitu Producción centralizada

Tuberías

Camión con hidrógeno comprimido

Panel de transferencia

Compresor de hidrógeno

Almacenamiento

Dispensador

Cooler

Tipos de estaciones de repostaje

Móvil

**H2** Gaseoso

**H2 Líquido** 

# Vehículos con celdas de combustible

Los vehículos con celdas de combustible utilizan H2 y O2 del aire para generar electricidad a través de una reacción electroquímica en la celda, produciendo energía eléctrica y agua. Esta electricidad alimenta el motor que impulsa el vehículo.

# Sectores de uso de celdas de combustible

- · Trabajo industrial.
- · Transporte público.
- · Industria.

Reglamento

**UNECE R134** 

· Energía de respaldo.

¿Qué estándares internacionales orientan el uso de H2 en celdas de combustible?

#### Fragilización por H2 👜

El H2 debe ser almacenado en tanques especiales, al ser capaz de permear las capas de algunos materiales.

Tipos de tanques que almacenan H2:

Regula tecnologías de H2.

ISO 19880
-8: 2019

Regula transporte y estaciones de servicio.

ISO Regula producción de H2.

Regula uso de vehículos.

Regula calidad del combustible.

Aluminio o acero Tipo 1

Revestimiento metálico, envoltura de fibra de vidrio o carbono.

Revestimiento metálico, envoltura de material compuesto.

Plástico hermético reforzado con material compuesto.

Tipo 4

# Calderas industriales de H2V

Las calderas de H2V pueden ser utilizadas para calentar agua o aire con distintos propósitos productivos.



# Tecnología asociada al uso de calderas

- · Calderas de agua caliente.
- · Calderas de vapor.
- · Sistemas de eficiencia.
- · Componentes (módulos de agua, condensado, etc.).
- · Monitoreo de sistemas.

#### Calderas híbridas

Las calderas pueden equiparse con un dispositivo adicional de suministro energético, que permite una operación flexible a base de combustible y electricidad.

#### Beneficios

Uso de electricidad excedente del balance energético de la planta.

Rápido suministro energético y alta eficiencia del sistema (98%).

¿Hydrogen firing o ready?

Hydrogen firing calderas diseñadas para la combustión de H2V.

**Hydrogen ready** calderas adaptadas para la combustión de H2V.

#### Mezclas de H2

Ejemplo: Se puede mezclar hidrógeno con gas natural.

#### Fluctuación del suministro de H2 en volumen

HIDRÓCENO

| ≤10% | En caso de no cambiar el dispositivo de        |
|------|------------------------------------------------|
|      | mezcla, requiere la readaptación del quemador. |

| > 11 10/0 | Requiere medidas técnicas, administrativas |
|-----------|--------------------------------------------|
|           | y legales adicionales.                     |

# Seguridad en proyectos de hidrógeno

El hidrógeno es un gas inflamable por lo que la seguridad de proyectos es fundamental. Ésta debe incluir medidas como: sistemas de detección de fugas, ventilación adecuada y protocolos de manejo seguro.



#### ¿El H2 es seguro?

Es seguro si se aplican las medidas de prevención adecuadas. Sus características son:

- Explosivo bajo ciertas condiciones.
- Inflamable.
- Incoloro e inodoro.
- Sofocante.
- + No es tóxico.
- + No es carcinógeno.
- + No es oxidante.

Gas natural v/s Hidrógeno.



En comparación al gas natural, el rango explosivo del hidrógeno es más amplio y su energía de ignición es menor.

Para un manejo seguro de H2, se propone una serie de soluciones:



#### Educación.

Detección de fugas.

Protección de explosiones.

**Amplio rango** de inflamabilidad.



# Soluciones

- 1. Capacitaciones.
- 2. Mantenimiento e inspecciones regulares.
- 3. Sensores infrarrojo.
- 4. Planes de emergencia.
- 5. Detectores ultrasónicos.

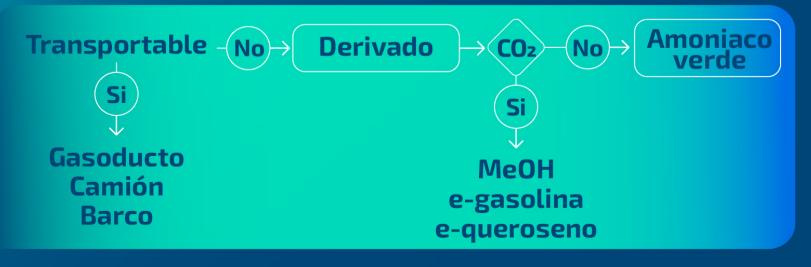
# Producción de e-fuels en base a H2V

Los e-fuels como el metanol, la gasolina o diésel sintético se producen combinando dióxido de carbono (CO2) e hidrógeno (H2). Estos pueden ser utilizados en vehículos convencionales como automóviles, aviones o barcos.

Hidrógen

Mercado del metanol (MeOH)

El consumo mundial de MeOH es de 98 millones de toneladas al año. Éste es producido en base a combustibles fósiles, tales como el carbón (35%) o gas natural (65%).


¿Por qué producir e-fuels? 🔗

Los e-fuels constituyen una solución para avanzar en la descarbonización del transporte.

Síntesis del metanol

A alta temperatura y presión, el H2 y CO2 reaccionan y generan una mezcla de metanol y agua. Posteriormente, el metanol es separado y purificado.

Árbol de decisión para proyectos de hidrógeno.



# Certificación de H2V y productos Power-to-X

La certificación del H2V garantiza su producción a partir de fuentes renovables y bajo impacto ambiental.

# Estructura de certificación

- 1. Marco normativo.
- 2. Esquemas voluntarios.
- 3. Organismos de certificación acreditados.
- 4. Participantes del mercado.
- 5. Base de datos.

#### Algunos criterios de certificación:

- 1. Tipo de fuente de energía.
- 2. Reducción de emisiones GEI.
  - 3. Otros como adicionalidad, correlación temporal y geográfica.

# Tipos de enfoque de certificación

#### **Book & claim:**

Permite la separación entre el producto y el certificado. Las moléculas de H2V y los certificados se pueden comercializar de forma independiente, sin la necesidad de realizar una trazabilidad física entre ellas.

#### Balance de masa:

Permite el seguimiento y la trazabilidad de los atributos a lo largo de la cadena de suministro del producto, vinculando los atributos evidenciados por la certificación con el producto final.